Random Number Generation Using Discrete Distributions


Discrete Distributions

The aim of  this lecture is to drawn random population from different discrete distributions. (Error or Omission id Expected). Please provide your comments for the further improvement in the preparation of codes. 

###################################################

library(sampling)

library(MASS)

Bernoulli Distribution 

rbinom(N, 1, p),

For example

rbinom(10,1, 0.4)

Binomial Distribution 

rbinom(N, n, p)

For example

rbinom(10, 4, 0.4)

Poisson Distribution

rpois(N, m)

For example

rpois(10, 3)

Negative Binomial Distribution 

rbinom(N, r, p)

For example

rnbinom(10, 3, 0.5)

Hypergeomatric Distribution

rbinom(N, r, b, n)

For example 

rhyper(10,3,4,5)

################################################################

For simulation please click on the following links

Simulation of the Ratio and Regression Estimator

Simulation with Missing Data

Thanks for following



Please provide your suggestions 

Comments